| 1 |
bearsoft |
1.1 |
#include "Rotations.h"
|
| 2 |
|
|
#include "math.h"
|
| 3 |
|
|
|
| 4 |
|
|
|
| 5 |
|
|
Rotations::Rotations()
|
| 6 |
|
|
{
|
| 7 |
|
|
xangle=0;
|
| 8 |
|
|
yangle=0;
|
| 9 |
|
|
zangle=0;
|
| 10 |
|
|
}
|
| 11 |
|
|
|
| 12 |
|
|
Rotations::~Rotations(){}
|
| 13 |
|
|
|
| 14 |
|
|
void Rotations::copy_matrix( float rotate[4][4], float dest[4][4] )
|
| 15 |
|
|
{
|
| 16 |
|
|
dest[0][0]=rotate[0][0];
|
| 17 |
|
|
dest[0][1]=rotate[0][1];
|
| 18 |
|
|
dest[0][2]=rotate[0][2];
|
| 19 |
|
|
dest[0][3]=rotate[0][3];
|
| 20 |
|
|
|
| 21 |
|
|
dest[1][0]=rotate[1][0];
|
| 22 |
|
|
dest[1][1]=rotate[1][1];
|
| 23 |
|
|
dest[1][2]=rotate[1][2];
|
| 24 |
|
|
dest[1][3]=rotate[1][3];
|
| 25 |
|
|
|
| 26 |
|
|
dest[2][0]=rotate[2][0];
|
| 27 |
|
|
dest[2][1]=rotate[2][1];
|
| 28 |
|
|
dest[2][2]=rotate[2][2];
|
| 29 |
|
|
dest[2][3]=rotate[2][3];
|
| 30 |
|
|
|
| 31 |
|
|
dest[3][0]=rotate[3][0];
|
| 32 |
|
|
dest[3][1]=rotate[3][1];
|
| 33 |
|
|
dest[3][2]=rotate[3][2];
|
| 34 |
|
|
dest[3][3]=rotate[3][3];
|
| 35 |
|
|
}
|
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
void Rotations::inverse_matrix( float rotate[4][4] )
|
| 39 |
|
|
{
|
| 40 |
|
|
float d00,d01,d02,d03;
|
| 41 |
|
|
float d10,d11,d12,d13;
|
| 42 |
|
|
float d20,d21,d22,d23;
|
| 43 |
|
|
float d30,d31,d32,d33;
|
| 44 |
|
|
float m00,m01,m02,m03;
|
| 45 |
|
|
float m10,m11,m12,m13;
|
| 46 |
|
|
float m20,m21,m22,m23;
|
| 47 |
|
|
float m30,m31,m32,m33;
|
| 48 |
|
|
float d;
|
| 49 |
|
|
|
| 50 |
|
|
/////////////////////////////////////////////////////////////////////////
|
| 51 |
|
|
|
| 52 |
|
|
m00=rotate[0][0];
|
| 53 |
|
|
m01=rotate[0][1];
|
| 54 |
|
|
m02=rotate[0][2];
|
| 55 |
|
|
m03=rotate[0][3];
|
| 56 |
|
|
|
| 57 |
|
|
m10=rotate[1][0];
|
| 58 |
|
|
m11=rotate[1][1];
|
| 59 |
|
|
m12=rotate[1][2];
|
| 60 |
|
|
m13=rotate[1][3];
|
| 61 |
|
|
|
| 62 |
|
|
m20=rotate[2][0];
|
| 63 |
|
|
m21=rotate[2][1];
|
| 64 |
|
|
m22=rotate[2][2];
|
| 65 |
|
|
m23=rotate[2][3];
|
| 66 |
|
|
|
| 67 |
|
|
m30=rotate[3][0];
|
| 68 |
|
|
m31=rotate[3][1];
|
| 69 |
|
|
m32=rotate[3][2];
|
| 70 |
|
|
m33=rotate[3][3];
|
| 71 |
|
|
|
| 72 |
|
|
/////////////////////////////////////////////////////////////////////////
|
| 73 |
|
|
|
| 74 |
|
|
d00 = m11*m22*m33 + m12*m23*m31 + m13*m21*m32 - m31*m22*m13 - m32*m23*m11 - m33*m21*m12;
|
| 75 |
|
|
d01 = m10*m22*m33 + m12*m23*m30 + m13*m20*m32 - m30*m22*m13 - m32*m23*m10 - m33*m20*m12;
|
| 76 |
|
|
d02 = m10*m21*m33 + m11*m23*m30 + m13*m20*m31 - m30*m21*m13 - m31*m23*m10 - m33*m20*m11;
|
| 77 |
|
|
d03 = m10*m21*m32 + m11*m22*m30 + m12*m20*m31 - m30*m21*m12 - m31*m22*m10 - m32*m20*m11;
|
| 78 |
|
|
|
| 79 |
|
|
d10 = m01*m22*m33 + m02*m23*m31 + m03*m21*m32 - m31*m22*m03 - m32*m23*m01 - m33*m21*m02;
|
| 80 |
|
|
d11 = m00*m22*m33 + m02*m23*m30 + m03*m20*m32 - m30*m22*m03 - m32*m23*m00 - m33*m20*m02;
|
| 81 |
|
|
d12 = m00*m21*m33 + m01*m23*m30 + m03*m20*m31 - m30*m21*m03 - m31*m23*m00 - m33*m20*m01;
|
| 82 |
|
|
d13 = m00*m21*m32 + m01*m22*m30 + m02*m20*m31 - m30*m21*m02 - m31*m22*m00 - m32*m20*m01;
|
| 83 |
|
|
|
| 84 |
|
|
d20 = m01*m12*m33 + m02*m13*m31 + m03*m11*m32 - m31*m12*m03 - m32*m13*m01 - m33*m11*m02;
|
| 85 |
|
|
d21 = m00*m12*m33 + m02*m13*m30 + m03*m10*m32 - m30*m12*m03 - m32*m13*m00 - m33*m10*m02;
|
| 86 |
|
|
d22 = m00*m11*m33 + m01*m13*m30 + m03*m10*m31 - m30*m11*m03 - m31*m13*m00 - m33*m10*m01;
|
| 87 |
|
|
d23 = m00*m11*m32 + m01*m12*m30 + m02*m10*m31 - m30*m11*m02 - m31*m12*m00 - m32*m10*m01;
|
| 88 |
|
|
|
| 89 |
|
|
d30 = m01*m12*m23 + m02*m13*m21 + m03*m11*m22 - m21*m12*m03 - m22*m13*m01 - m23*m11*m02;
|
| 90 |
|
|
d31 = m00*m12*m23 + m02*m13*m20 + m03*m10*m22 - m20*m12*m03 - m22*m13*m00 - m23*m10*m02;
|
| 91 |
|
|
d32 = m00*m11*m23 + m01*m13*m20 + m03*m10*m21 - m20*m11*m03 - m21*m13*m00 - m23*m10*m01;
|
| 92 |
|
|
d33 = m00*m11*m22 + m01*m12*m20 + m02*m10*m21 - m20*m11*m02 - m21*m12*m00 - m22*m10*m01;
|
| 93 |
|
|
|
| 94 |
|
|
/////////////////////////////////////////////////////////////////////////
|
| 95 |
|
|
|
| 96 |
|
|
d = m00*d00 - m01*d01 + m02*d02 - m03*d03;
|
| 97 |
|
|
|
| 98 |
|
|
if(0.0 != d)
|
| 99 |
|
|
{
|
| 100 |
|
|
d = 1.0f/d;
|
| 101 |
|
|
|
| 102 |
|
|
rotate[0][0] = d00*d;
|
| 103 |
|
|
rotate[0][1] = -d10*d;
|
| 104 |
|
|
rotate[0][2] = d20*d;
|
| 105 |
|
|
rotate[0][3] = -d30*d;
|
| 106 |
|
|
|
| 107 |
|
|
rotate[1][0] = -d01*d;
|
| 108 |
|
|
rotate[1][1] = d11*d;
|
| 109 |
|
|
rotate[1][2] = -d21*d;
|
| 110 |
|
|
rotate[1][3] = d31*d;
|
| 111 |
|
|
|
| 112 |
|
|
rotate[2][0] = d02*d;
|
| 113 |
|
|
rotate[2][1] = -d12*d;
|
| 114 |
|
|
rotate[2][2] = d22*d;
|
| 115 |
|
|
rotate[2][3] = -d32*d;
|
| 116 |
|
|
|
| 117 |
|
|
rotate[3][0] = -d03*d;
|
| 118 |
|
|
rotate[3][1] = d13*d;
|
| 119 |
|
|
rotate[3][2] = -d23*d;
|
| 120 |
|
|
rotate[3][3] = d33*d;
|
| 121 |
|
|
}
|
| 122 |
|
|
|
| 123 |
|
|
}
|
| 124 |
|
|
|
| 125 |
|
|
|
| 126 |
|
|
void Rotations::makenormtab()
|
| 127 |
|
|
{
|
| 128 |
|
|
for ( int step=0 ; step<numberofpolys ; step++ )
|
| 129 |
|
|
{
|
| 130 |
|
|
// calc normal for the polygon
|
| 131 |
|
|
|
| 132 |
|
|
int pos1=step*3+0;
|
| 133 |
|
|
int pos2=step*3+1;
|
| 134 |
|
|
int pos3=step*3+2;
|
| 135 |
|
|
|
| 136 |
|
|
float uxt=vx[points[pos2]]-vx[points[pos1]];
|
| 137 |
|
|
float uyt=vy[points[pos2]]-vy[points[pos1]];
|
| 138 |
|
|
float uzt=vz[points[pos2]]-vz[points[pos1]];
|
| 139 |
|
|
|
| 140 |
|
|
float vxt=vx[points[pos3]]-vx[points[pos2]];
|
| 141 |
|
|
float vyt=vy[points[pos3]]-vy[points[pos2]];
|
| 142 |
|
|
float vzt=vz[points[pos3]]-vz[points[pos2]];
|
| 143 |
|
|
|
| 144 |
|
|
float x = uyt*vzt - uzt*vyt; // x normal
|
| 145 |
|
|
float y = uzt*vxt - uxt*vzt; // y normal
|
| 146 |
|
|
float z = uxt*vyt - uyt*vxt; // z normal
|
| 147 |
|
|
|
| 148 |
|
|
float dist=(float)sqrt(x*x+y*y+z*z); // distans till normal
|
| 149 |
|
|
|
| 150 |
|
|
vnx[step]=x;
|
| 151 |
|
|
vny[step]=y;
|
| 152 |
|
|
vnz[step]=z;
|
| 153 |
|
|
|
| 154 |
|
|
}
|
| 155 |
|
|
|
| 156 |
|
|
}
|
| 157 |
|
|
|
| 158 |
|
|
void Rotations::matmulmatrix44(float a[4][4] ,float b[4][4], float result[4][4])
|
| 159 |
|
|
{
|
| 160 |
|
|
int i,j,k;
|
| 161 |
|
|
|
| 162 |
|
|
float sum;
|
| 163 |
|
|
|
| 164 |
|
|
for ( i=0; i<4; i++ )
|
| 165 |
|
|
{
|
| 166 |
|
|
|
| 167 |
|
|
for ( j=0; j<4 ; j++ )
|
| 168 |
|
|
{
|
| 169 |
|
|
sum=0;
|
| 170 |
|
|
|
| 171 |
|
|
for ( k=0; k<4; k++ )
|
| 172 |
|
|
{
|
| 173 |
|
|
sum+=a[i][k]*b[k][j];
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
result[i][j]=sum;
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
}
|
| 180 |
|
|
|
| 181 |
|
|
}
|
| 182 |
|
|
|
| 183 |
|
|
|
| 184 |
|
|
void Rotations::clearmatric(float a[4][4])
|
| 185 |
|
|
{
|
| 186 |
|
|
a[0][0]=0;
|
| 187 |
|
|
a[1][0]=0;
|
| 188 |
|
|
a[2][0]=0;
|
| 189 |
|
|
a[3][0]=0;
|
| 190 |
|
|
|
| 191 |
|
|
a[0][1]=0;
|
| 192 |
|
|
a[1][1]=0;
|
| 193 |
|
|
a[2][1]=0;
|
| 194 |
|
|
a[3][1]=0;
|
| 195 |
|
|
|
| 196 |
|
|
a[0][2]=0;
|
| 197 |
|
|
a[1][2]=0;
|
| 198 |
|
|
a[2][2]=0;
|
| 199 |
|
|
a[3][2]=0;
|
| 200 |
|
|
|
| 201 |
|
|
a[0][3]=0;
|
| 202 |
|
|
a[1][3]=0;
|
| 203 |
|
|
a[2][3]=0;
|
| 204 |
|
|
a[3][3]=0;
|
| 205 |
|
|
|
| 206 |
|
|
a[0][0]=1;
|
| 207 |
|
|
a[1][1]=1;
|
| 208 |
|
|
a[2][2]=1;
|
| 209 |
|
|
a[3][3]=1;
|
| 210 |
|
|
}
|
| 211 |
|
|
|
| 212 |
|
|
void Rotations::objectspline(float x, float y, float z)
|
| 213 |
|
|
{
|
| 214 |
|
|
clearmatric( rotate );
|
| 215 |
|
|
clearmatric( rotate_x2 );
|
| 216 |
|
|
clearmatric( rotate_y2 );
|
| 217 |
|
|
clearmatric( rotate_z2 );
|
| 218 |
|
|
clearmatric( translate2 );
|
| 219 |
|
|
|
| 220 |
|
|
translate2[3][0]=(x/30);
|
| 221 |
|
|
translate2[3][1]=-(y/30);
|
| 222 |
|
|
translate2[3][2]=-10.0f;
|
| 223 |
|
|
|
| 224 |
|
|
xangle++;
|
| 225 |
|
|
yangle++;
|
| 226 |
|
|
zangle++;
|
| 227 |
|
|
|
| 228 |
|
|
// yangle=180.0f;
|
| 229 |
|
|
|
| 230 |
|
|
float tempxangle=xangle;
|
| 231 |
|
|
float tempyangle=yangle;
|
| 232 |
|
|
float tempzangle=zangle;
|
| 233 |
|
|
|
| 234 |
|
|
tempxangle=(float)3.14*tempxangle/180;
|
| 235 |
|
|
tempyangle=(float)3.14*tempyangle/180;
|
| 236 |
|
|
tempzangle=(float)3.14*tempzangle/180;
|
| 237 |
|
|
|
| 238 |
|
|
rotate_x2[1][1]=(float)cos(tempxangle);
|
| 239 |
|
|
rotate_x2[0][1]=(float)(sin(tempxangle));
|
| 240 |
|
|
rotate_x2[1][0]=(float)(-sin(tempxangle));
|
| 241 |
|
|
rotate_x2[0][0]=(float)cos(tempxangle);
|
| 242 |
|
|
|
| 243 |
|
|
rotate_y2[0][0]=(float)cos(tempyangle);
|
| 244 |
|
|
rotate_y2[0][2]=(float)(-sin(tempyangle));
|
| 245 |
|
|
rotate_y2[2][0]=(float)(sin(tempyangle));
|
| 246 |
|
|
rotate_y2[2][2]=(float)cos(tempyangle);
|
| 247 |
|
|
|
| 248 |
|
|
rotate_z2[1][1]=(float)cos(tempzangle);
|
| 249 |
|
|
rotate_z2[1][2]=(float)(sin(tempzangle));
|
| 250 |
|
|
rotate_z2[2][1]=(float)(-sin(tempzangle));
|
| 251 |
|
|
rotate_z2[2][2]=(float)cos(tempzangle);
|
| 252 |
|
|
}
|
| 253 |
|
|
|
| 254 |
|
|
void Rotations::objectsmulmatrix()
|
| 255 |
|
|
{
|
| 256 |
|
|
float temp[4][4]={ {1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1} };
|
| 257 |
|
|
float temp2[4][4]={ {1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1} };
|
| 258 |
|
|
|
| 259 |
|
|
matmulmatrix44( rotate_x2, rotate_z2, temp);
|
| 260 |
|
|
matmulmatrix44( temp, rotate_y2, temp2);
|
| 261 |
|
|
matmulmatrix44( temp2, translate2, rotate);
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
|
| 265 |
|
|
void Rotations::calculaterotation()
|
| 266 |
|
|
{
|
| 267 |
|
|
for ( int v=0 ; v<numberofvertices ; v++ )
|
| 268 |
|
|
{
|
| 269 |
|
|
if ( visiblyvertices[v] != 0 )
|
| 270 |
|
|
{
|
| 271 |
|
|
x[v]=vx[v]*rotate[0][0]+vy[v]*rotate[1][0]+vz[v]*rotate[2][0]+rotate[3][0];
|
| 272 |
|
|
y[v]=vx[v]*rotate[0][1]+vy[v]*rotate[1][1]+vz[v]*rotate[2][1]+rotate[3][1];
|
| 273 |
|
|
z[v]=vx[v]*rotate[0][2]+vy[v]*rotate[1][2]+vz[v]*rotate[2][2]+rotate[3][2];
|
| 274 |
|
|
z[v]=-z[v];
|
| 275 |
|
|
}
|
| 276 |
|
|
}
|
| 277 |
|
|
}
|
| 278 |
|
|
|
| 279 |
|
|
|
| 280 |
|
|
void Rotations::calculate_inverse_rotation()
|
| 281 |
|
|
{
|
| 282 |
|
|
for ( int v=0 ; v<numberofvertices ; v++ )
|
| 283 |
|
|
{
|
| 284 |
|
|
ix[v]=-translate2[3][0]*inverse_rotate[0][0]+-translate2[3][1]*inverse_rotate[1][0]+-translate2[3][2]*inverse_rotate[2][0];
|
| 285 |
|
|
iy[v]=-translate2[3][0]*inverse_rotate[0][1]+-translate2[3][1]*inverse_rotate[1][1]+-translate2[3][2]*inverse_rotate[2][1];
|
| 286 |
|
|
iz[v]=-translate2[3][0]*inverse_rotate[0][2]+-translate2[3][1]*inverse_rotate[1][2]+-translate2[3][2]*inverse_rotate[2][2];
|
| 287 |
|
|
}
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
void Rotations::backfacecull()
|
| 291 |
|
|
{
|
| 292 |
|
|
for ( int v=0 ; v<numberofvertices ; v++ )
|
| 293 |
|
|
{
|
| 294 |
|
|
visiblyvertices[v]=0;
|
| 295 |
|
|
}
|
| 296 |
|
|
|
| 297 |
|
|
for ( int oo=0 ; oo<numberofpolys ; oo++ )
|
| 298 |
|
|
{
|
| 299 |
|
|
int p=0;
|
| 300 |
|
|
|
| 301 |
|
|
for ( int r=0; r<3 ; r++ )
|
| 302 |
|
|
{
|
| 303 |
|
|
if (check_vertices_is_visibly(oo, r))
|
| 304 |
|
|
{
|
| 305 |
|
|
p++;
|
| 306 |
|
|
}
|
| 307 |
|
|
}
|
| 308 |
|
|
|
| 309 |
|
|
if ( p == 3 )
|
| 310 |
|
|
{
|
| 311 |
|
|
visiblypolys[oo]=1;
|
| 312 |
|
|
|
| 313 |
|
|
for ( int step=0; step<3 ; step++ )
|
| 314 |
|
|
{
|
| 315 |
|
|
visiblyvertices[points[oo*3+step]]++;
|
| 316 |
|
|
}
|
| 317 |
|
|
|
| 318 |
|
|
}
|
| 319 |
|
|
else
|
| 320 |
|
|
{
|
| 321 |
|
|
visiblypolys[oo]=0;
|
| 322 |
|
|
}
|
| 323 |
|
|
}
|
| 324 |
|
|
}
|
| 325 |
|
|
|
| 326 |
|
|
|
| 327 |
|
|
bool Rotations::check_vertices_is_visibly( int oo, int step)
|
| 328 |
|
|
{
|
| 329 |
|
|
bool sant=false;
|
| 330 |
|
|
|
| 331 |
|
|
float gx=vnx[oo]*(ix[points[oo*3+step]]-vx[points[oo*3+step]]);
|
| 332 |
|
|
float gy=vny[oo]*(iy[points[oo*3+step]]-vy[points[oo*3+step]]);
|
| 333 |
|
|
float gz=vnz[oo]*(iz[points[oo*3+step]]-vz[points[oo*3+step]]);
|
| 334 |
|
|
|
| 335 |
|
|
float g=gx+gy+gz;
|
| 336 |
|
|
|
| 337 |
|
|
if ( g > 0 )
|
| 338 |
|
|
{
|
| 339 |
|
|
sant=true;
|
| 340 |
|
|
}
|
| 341 |
|
|
|
| 342 |
|
|
return sant;
|
| 343 |
|
|
}
|
| 344 |
|
|
|
| 345 |
|
|
void Rotations::initbackfacecull()
|
| 346 |
|
|
{
|
| 347 |
|
|
copy_matrix(rotate,inverse_rotate);
|
| 348 |
|
|
inverse_matrix(inverse_rotate);
|
| 349 |
|
|
calculate_inverse_rotation();
|
| 350 |
|
|
}
|